Or let me rephrase it, is there a largest prime number?

3

220,996,011-1

Not 3 then???

Correct, as always.

no to put it bluntly there is not a largest prime number its like counting there is not a largest number cos when you add 1 it gets bigger so basically numbers go to infinity and so will the largest prime number

:o OMG this is getting boring time to move on i think

Well, I guess that answers the question.

That’s hardly a proof A trivial proof ad absurdum goes like this : suppose

there’s indeed a largest prime number n. Then consider the number obtained

by multiplying all primes smaller or equal to n, then add one to it. None of the

primes up to n divides this number, thus it is also a prime. This number is also

larger than n, thus n was not the biggest prime -> game over.

Euh, I think you’re wrong (never thought I would say that to you).

Who says that the number obtained by multiplying those primes + 1 isn’t divisible by 2 or 3 or 4??

I mean (3*5*7*11*13)+1=15016 This is divisible by 2, 4,…

Or am I misunderstanding you?

1

This man speaks the truth!

2 is prime in my book

Here is a list of the top 100 largest prime numbers Got it here

1 2^25964951-1 7816230 G8 2005 Mersenne 42?

2 2^24036583-1 7235733 G7 2004 Mersenne 41?

3 2^20996011-1 6320430 G6 2003 Mersenne 40?

4 2^13466917-1 4053946 G5 2001 Mersenne 39

5 28433*2^7830457+1 2357207 SB7 2004
6 2^6972593-1 2098960 G4 1999 Mersenne 38
7 5359*2^5054502+1 1521561 SB6 2003

8 2^3021377-1 909526 G3 1998 Mersenne 37

9 2^2976221-1 895932 G2 1997 Mersenne 36

10 1372930^131072+1 804474 g236 2003 Generalized Fermat

11 1361244^131072+1 803988 g236 2004 Generalized Fermat

12 1176694^131072+1 795695 g236 2003 Generalized Fermat

13 572186^131072+1 754652 g0 2004 Generalized Fermat

14 3

*2^2478785+1 746190 g245 2003*

Divides Fermat F(2478782), GF(2478782,3), GF(2478776,6),

GF(2478782,12)

15 130816^131072+1 670651 g308 2003 Generalized Fermat

16 32^2145353+1 645817 g245 2003

Divides Fermat F(2478782), GF(2478782,3), GF(2478776,6),

GF(2478782,12)

15 130816^131072+1 670651 g308 2003 Generalized Fermat

16 3

Divides Fermat F(2145351), GF(2145351,3), GF(2145352,5),

GF(2145348,6), GF(2145352,10), GF(2145351,12)

17 62722^131072+1 628808 g308 2003 Generalized Fermat

18 21

*2^1830919+1 551163 g279 2004*

19 19502212^65536+1 477763 p160 2005 Generalized Fermat

20 132^1499876+1 451509 g267 2004

19 19502212^65536+1 477763 p160 2005 Generalized Fermat

20 13

Divides GF(1499875,3)

21 7

*2^1491852+1 449094 p166 2005*

Divides GF(1491851,6)

22 22320072^1490605-1 448724 L4 2003

Divides GF(1491851,6)

22 2232007

23 21

*2^1421741+1 427989 g279 2005*

24 1497972^1414137-1 425703 L105 2005

24 149797

25 2^1398269-1 420921 G1 1996 Mersenne 35

26 192089

*2^1395688-1 420150 L49 2004*

27 2414892^1365062+1 410930 L101 2005

27 241489

28 1828502^65536+1 410393 GF2 2005 Generalized Fermat

29 1540550^65536+1 405516 GF2 2003 Generalized Fermat

30 1483076^65536+1 404434 GF2 2003 Generalized Fermat

31 1478036^65536+1 404337 GF2 2002 Generalized Fermat

32 54767

*2^1337287+1 402569 SB5 2002*

33 1374038^65536+1 402260 GF3 2003 Generalized Fermat

34 1361846^65536+1 402007 GF3 2002 Generalized Fermat

35 1266062^65536+1 399931 g295 2002 Generalized Fermat

36 52^1320487+1 397507 g55 2002

33 1374038^65536+1 402260 GF3 2003 Generalized Fermat

34 1361846^65536+1 402007 GF3 2002 Generalized Fermat

35 1266062^65536+1 399931 g295 2002 Generalized Fermat

36 5

Divides GF(1320486,12)

37 1057476^65536+1 394807 g197 2002 Generalized Fermat

38 1024390^65536+1 393902 g299 2003 Generalized Fermat

39 857678^65536+1 388847 GF0 2002 Generalized Fermat

40 843832^65536+1 388384 GF0 2001 Generalized Fermat

41 138847

*2^1283793-1 386466 L2 2003*

42 52^1282755+1 386149 g55 2002

42 5

Divides GF(1282754,3), GF(1282748,5)

43 671600^65536+1 381886 g55 2002 Generalized Fermat

44 25

*2^1258562+1 378867 g279 2004 Generalized Fermat*

45 2^1257787-1 378632 SG 1996 Mersenne 34

46 808571692^1251076-1 376620 L10 2004

45 2^1257787-1 378632 SG 1996 Mersenne 34

46 80857169

47 549868^65536+1 376194 g295 2003 Generalized Fermat

48 544118^65536+1 375895 g295 2002 Generalized Fermat

49 21

*2^1240067+1 373299 g279 2004*

50 32^1232255-1 370947 L30 2004

50 3

51 440846^65536+1 369904 GC1 2002 Generalized Fermat

52 25

*2^1211488+1 364696 g279 2005*

Generalized Fermat, divides GF(1211487,12)

53 357868^65536+1 363969 g266 2003 Generalized Fermat

54 32^1201046-1 361552 L77 2004

Generalized Fermat, divides GF(1211487,12)

53 357868^65536+1 363969 g266 2003 Generalized Fermat

54 3

55 502541

*2^1199930-1 361221 L93 2004*

56 292550^65536+1 358233 GC2 2002 Generalized Fermat

57 291726^65536+1 358153 GC2 2002 Generalized Fermat

58 710092^1185112-1 356760 L47 2004

56 292550^65536+1 358233 GC2 2002 Generalized Fermat

57 291726^65536+1 358153 GC2 2002 Generalized Fermat

58 71009

59 255694^65536+1 354401 g266 2002 Generalized Fermat

60 69109

*2^1157446+1 348431 SB4 2002*

61 1527132^1154707-1 347607 g23 2004

61 152713

62 189590^65536+1 345887 g262 2002 Generalized Fermat

63 350107

*2^1144101-1 344415 L35 2004*

64 2098264932^1140855-1 343440 L10 2004

64 209826493

65 500621

*2^1138518-1 342734 L73 2004*

66 5046132^1136459-1 342114 L84 2004

66 504613

67 141146^65536+1 337489 g281 2002 Generalized Fermat

68 108368^65536+1 329968 g181 2001 Generalized Fermat

69 412717

*2^1084409-1 326446 L76 2004*

70 1508472^1076441-1 324047 L73 2004

70 150847

71 209826493

*2^1071303-1 322503 L10 2004*

72 92^1051026+1 316392 p156 2004 Generalized Fermat

72 9

73 121

*2^1039965-1 313063 L65 2004*

74 132^1038896+1 312740 g267 2004

74 13

75 21

*2^1022168+1 307705 g279 2004*

76 48594^65536+1 307140 g141 2000 Generalized Fermat

77 655672^1013803+1 305190 SB2 2002

76 48594^65536+1 307140 g141 2000 Generalized Fermat

77 65567

78 869

*2^1000725+1 301252 p114 2005*

79 328832^1000004+1 301036 p86 2002

79 32883

80 44131

*2^995972+1 299823 SB3 2002*

81 32^992700-1 298833 L59 2004

81 3

82 121

*2^990219-1 298088 L66 2004*

83 232^977541+1 294271 g267 2004

83 23

84 25

*2^966414+1 290922 g279 2004 Generalized Fermat*

85 112^960901+1 289262 g277 2005

85 11

Divides Fermat F(960897)

86 243163663

*2^919087-1 276682 L10 2004*

87 32^916773+1 275977 g245 2001

87 3

Divides GF(916771,3), GF(916772,10)

88 216751

*2^903792+1 272074 g346 2004*

89 3098172^901173-1 271286 L64 2004

89 309817

90 19581121

*2^893547-1 268992 p49 2004*

91 112^886071+1 266735 g277 2005

91 11

Divides GF(886070,12)

92 170591

*2^866870-1 260960 L47 2004*

93 939972^864401-1 260216 L49 2004

93 93997

94 19581121

*2^862127-1 259534 p49 2003*

95 2^859433-1 258716 SG 1994 Mersenne 33

96 212^856865+1 257944 g279 2004

95 2^859433-1 258716 SG 1994 Mersenne 33

96 21

97 19

*2^853546+1 256945 g381 2005*

98 92^834810+1 251304 p148 2004 Generalized Fermat

98 9

99 9

*2^828709-1 249468 L38 2005*

100 172^824451+1 248186 g267 2004

100 17

Largest prime number ever is found

[ul]

[li] 15:11 02 December 2003[/li][li] NewScientist.com news service[/li][li]Will Knight[/li][/ul]

A 26-year-old graduate student in the US has made mathematical history by discovering the largest known prime number.

```
The new number is 6,320,430 digits long. It took just over two years to find using a distributed network of more than 200,000 computers.
Michael Shafer a chemical engineering student at Michigan State University used his office computer to contribute spare processing power to the Great Internet Mersenne Prime Search (GIMPS). The project has more than 60,000 volunteers from all over the world taking part.
"I had just finished a meeting with my advisor when I saw the computer had found the new prime," Shafer says. "After a short victory dance, I called up my wife and friends involved with GIMPS to share the great news."
Prime numbers are positive integers that can only be divided by themselves and one. Mersenne primes are an especially rare type of prime that take the form 2 p-1, where p is also a prime number. The new number can be represented as 220,996,011-1. It is only the 40th Mersenne prime to have ever been found.
```

Found this here

I doubt anyone could say what the largest prime number is, even the largest mersienne prime is limitless.

The largest prime number ever is obsolete before you finish writing it down